Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Genomics ; 24(2): 84-99, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37994325

RESUMO

Background: Crohn's disease (CD) is a chronic idiopathic inflammatory bowel disease affecting the entire gastrointestinal tract from the mouth to the anus. These patients often experience a period of symptomatic relapse and remission. A 20 - 30% symptomatic recurrence rate is reported in the first year after surgery, with a 10% increase each subsequent year. Thus, surgery is done only to relieve symptoms and not for the complete cure of the disease. The determinants and the genetic factors of this disease recurrence are also not well-defined. Therefore, enhanced diagnostic efficiency and prognostic outcome are critical for confronting CD recurrence. Methods: We analysed ileal mucosa samples collected from neo-terminal ileum six months after surgery (M6=121 samples) from Crohn's disease dataset (GSE186582). The primary aim of this study is to identify the potential genes and critical pathways in post-operative recurrence of Crohn's disease. We combined the differential gene expression analysis with Recursive feature elimination (RFE), a machine learning approach to get five critical genes for the postoperative recurrence of Crohn's disease. The features (genes) selected by different methods were validated using five binary classifiers for recurrence and remission samples: Logistic Regression (LR), Decision tree classifier (DT), Support Vector Machine (SVM), Random Forest classifier (RF), and K-nearest neighbor (KNN) with 10-fold cross-validation. We also performed weighted gene co-expression network analysis (WGCNA) to select specific modules and feature genes associated with Crohn's disease postoperative recurrence, smoking, and biological sex. Combined with other biological interpretations, including Gene Ontology (GO) analysis, pathway enrichment, and protein-protein interaction (PPI) network analysis, our current study sheds light on the in-depth research of CD diagnosis and prognosis in postoperative recurrence. Results: PLOD2, ZNF165, BOK, CX3CR1, and ARMCX4, are the important genes identified from the machine learning approach. These genes are reported to be involved in the viral protein interaction with cytokine and cytokine receptors, lysine degradation, and apoptosis. They are also linked with various cellular and molecular functions such as Peptidyl-lysine hydroxylation, Central nervous system maturation, G protein-coupled chemoattractant receptor activity, BCL-2 homology (BH) domain binding, Gliogenesis and negative regulation of mitochondrial depolarization. WGCNA identified a gene co-expression module that was primarily involved in mitochondrial translational elongation, mitochondrial translational termination, mitochondrial translation, mitochondrial respiratory chain complex, mRNA splicing via spliceosome pathways, etc.; Both the analysis result emphasizes that the mitochondrial depolarization pathway is linked with CD recurrence leading to oxidative stress in promoting inflammation in CD patients. Conclusion: These key genes serve as the novel diagnostic biomarker for the postoperative recurrence of Crohn's disease. Thus, among other treatment options present until now, these biomarkers would provide success in both diagnosis and prognosis, aiming for a long-lasting remission to prevent further complications in CD.

2.
Genomics Inform ; 21(3): e41, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37813637

RESUMO

The Dengue virus M protein is a 75 amino acid polypeptide with two helical transmembranes (TM). The TM domain oligomerizes to form an ion channel, facilitating viral release from the host cells. The M protein has a critical role in the virus entry and life cycle, making it a potent drug target. The oligomerization of the monomeric protein was studied using ab initio modeling and molecular dynamics (MD) simulation in an implicit membrane environment. The representative structures obtained showed pentamer as the most stable oligomeric state, resembling an ion channel. Glutamic acid, threonine, serine, tryptophan, alanine, isoleucine form the pore-lining residues of the pentameric channel, conferring an overall negative charge to the channel with approximate length of 51.9 Å. Residue interaction analysis (RIN) for M protein shows that Ala94, Leu95, Ser112, Glu124, and Phe155 are the central hub residues representing the physicochemical interactions between domains. The virtual screening with 165 different ion channel inhibitors from the ion channel library shows monovalent ion channel blockers, namely lumacaftor, glipizide, gliquidone, glisoxepide, and azelnidipine to be the inhibitors with high docking scores. Understanding the three-dimensional structure of M protein will help design therapeutics and vaccines for Dengue infection.

3.
J Biomol Struct Dyn ; : 1-19, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37216286

RESUMO

The zymogen protease Plasminogen (Plg) and its active form plasmin (Plm) carry out important functions in the blood clot disintegration (breakdown of fibrin fibers) process. Inhibition of plasmin effectively reduces fibrinolysis to circumvent heavy bleeding. Currently, available Plm inhibitor tranexamic acid (TXA) used for treating severe hemorrhages is associated with an increased incidence of seizures which in turn were traced to gamma-aminobutyric acid antagonistic activity (GABAa) in addition to having multiple side effects. Fibrinolysis can be suppressed by targeting the three important protein domains: the kringle-2 domain of tissue plasminogen activator, the kringle-1 domain of plasminogen, and the serine protease domain of plasminogen. In the present study, one million molecules were screened from the ZINC database. These ligands were docked to their respective protein targets using Autodock Vina, Schrödinger Glide, and ParDOCK/BAPPL+. Thereafter, the drug-likeness properties of the ligands were evaluated using Discovery Studio 3.5. Subsequently, we subjected the protein-ligand complexes to molecular dynamics simulation of 200 ns in GROMACS. The identified ligands P76(ZINC09970930), C97(ZINC14888376), and U97(ZINC11839443) for each protein target are found to impart higher stability and greater compactness to the protein-ligand complexes. Principal component analysis (PCA) implicates, that the identified ligands occupy smaller phase space, form stable clusters, and provide greater rigidity to the protein-ligand complexes. Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis reveals that P76, C97, and U97 exhibit better binding free energy (ΔG) when compared to that of the standard ligands. Thus, our findings can be useful for the development of promising anti-fibrinolytic agents.Communicated by Ramaswamy H. Sarma.

4.
ACS Chem Neurosci ; 12(15): 2810-2819, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34296847

RESUMO

The main focus of prion structural biology studies is to understand the molecular basis of prion diseases caused by misfolding, and aggregation of the cellular prion protein PrPC remains elusive. Several genetic mutations are linked with human prion diseases and driven by the conformational conversion of PrPC to the toxic PrPSc. The main goal of this study is to gain a better insight into the molecular effect of disease-associated V210I mutation on this process by molecular dynamics simulations. This inherited mutation elicited copious structural changes in the ß1-α1-ß2 subdomain, including an unfolding of a helix α1 and the elongation of the ß-sheet. These unusual structural changes likely appeared to detach the ß1-α1-ß2 subdomain from the α2-α3 core, an early misfolding event necessary for the conformational conversion of PrPC to PrPSc. Ultimately, the unfolded α1 and its prior ß1-α1 loop further engaged with unrestrained conformational dynamics and were widely considered as amyloidogenic-inducing traits. Furthermore, the resulting folding intermediate possesses a highly unstable ß1-α1-ß2 subdomain, thereby enhancing the aggregation of misfolded PrPC through intermolecular interactions between frequently refolding regions. Briefly, these remarkable changes as seen in the mutant ß1-α1-ß2 subdomain are consistent with previous experimental results and thus provide a molecular basis of PrPC misfolding associated with the conformational conversion of PrPC to PrPSc.


Assuntos
Proteínas PrPC , Doenças Priônicas , Príons , Humanos , Simulação de Dinâmica Molecular , Mutação/genética , Proteínas PrPC/genética , Doenças Priônicas/genética , Proteínas Priônicas/genética , Conformação Proteica , Dobramento de Proteína
5.
J Proteins Proteom ; 12(3): 161-175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34121824

RESUMO

COVID-19, the current global pandemic has caused immense damage to human lives and the global economy. It is instigated by the SARS-CoV-2 virus and there is an immediate need for the identification of effective drugs against this deadly virus. SARS-CoV-2 genome codes for four structural proteins, sixteen non-structural proteins (NSPs) and several accessory proteins for its survival inside the host cells. In the present study, through in silico approaches, we aim to identify compounds that are effective against the four NSPs namely, NSP1, NSP4, NSP6 and NSP13 of SARS-CoV-2. The selection criteria of these four NSP proteins are they are least explored and potential targets. First, we have modeled the 3D structures of these proteins using homology modeling methods. Further, through molecular docking studies, we have screened the FDA-approved compounds against these modeled proteins and reported their docking scores. To gain dynamic insights, molecular dynamics studies have also been carried out for the best scored ligand against the NSPs. This study can further pave way for exposing more number of compounds against these proteins and enhance COVID-19 treatment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s42485-021-00067-w.

6.
Sci Rep ; 9(1): 15519, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664095

RESUMO

State-of-the-art ultra-sensitive blood glucose-monitoring biosensors, based on glucose oxidase (GOx) covalently linked to a single layer graphene (SLG), will be a valuable next generation diagnostic tool for personal glycemic level management. We report here our observations of sensor matrix structure obtained using a multi-physics approach towards analysis of small-angle neutron scattering (SANS) on graphene-based biosensor functionalized with GOx under different pH conditions for various hierarchical GOx assemblies within SLG. We developed a methodology to separately extract the average shape of GOx molecules within the hierarchical assemblies. The modeling is able to resolve differences in the average GOx dimer structure and shows that treatment under different pH conditions lead to differences within the GOx at the dimer contact region with SLG. The coupling of different analysis methods and modeling approaches we developed in this study provides a universal approach to obtain detailed structural quantifications, for establishing robust structure-property relationships. This is an essential step to obtain an insight into the structure and function of the GOx-SLG interface for optimizing sensor performance.


Assuntos
Técnicas Biossensoriais , Enzimas Imobilizadas/química , Glucose Oxidase/química , Glucose/análise , Grafite/química , Nanocompostos/química , Técnicas Eletroquímicas
7.
Int J Biol Macromol ; 123: 637-647, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30447376

RESUMO

Several studies on enzyme catalysis have pointed out that the product release event could be a rate limiting step. In this study, we have compared the release event of two products, Adenosine di-phosphate (ADP) and Thymidine di-phosphate (TDP) from the active-site of human and Thermus thermophilus thymidine mono-phosphate kinase (TMPK), referred to as hTMPK and ttTMPK, respectively. TMPK catalyses the conversion of Thymidine mono-phosphate (TMP) to TDP using ATP as phosphoryl donor in the presence of Mg2+ ion. Most of the earlier studies on this enzyme have focused on understanding substrate binding and catalysis, but the critical product release event remains elusive. Competitive binding experiments of the substrates and the products using ttTMPK apo crystals have indicated that the substrate (TMP) can replace the bound product (TDP), even in the presence of an ADP molecule. Further, the existing random accelerated molecular dynamics (RAMD) simulation program was modified to study the release of both the products simultaneously from the active site. The RAMD simulations on product-bound structures of both ttTMPK and hTMPK, revealed that while several exit patterns of the products are permissible, the sequential exit mode is the most preferred pattern for both ttTMPK and hTMPK enzymes. Additionally, the product release from the hTMPK was found to be faster and more directional as compared to ttTMPK. Structural investigation revealed that the critical changes in the residue composition in the LID-region of ttTMPK and hTMPK have an effect on the product release and can be attributed to the observed differences during product release event. Understanding of these dissimilarities is of considerable utility in designing potent inhibitors or prodrugs that can distinguish between eukaryotic and prokaryotic homologues of thymidylate kinase.


Assuntos
Evolução Molecular , Núcleosídeo-Fosfato Quinase/química , Conformação Proteica , Thermus thermophilus/enzimologia , Difosfato de Adenosina/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Humanos , Magnésio/química , Simulação de Dinâmica Molecular , Núcleosídeo-Fosfato Quinase/metabolismo , Ligação Proteica , Especificidade por Substrato , Thermus thermophilus/química
8.
Acta Crystallogr D Struct Biol ; 74(Pt 4): 341-354, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29652261

RESUMO

Thymidylate kinase is an important enzyme in DNA synthesis. It catalyzes the conversion of thymidine monophosphate to thymidine diphosphate, with ATP as the preferred phosphoryl donor, in the presence of Mg2+. In this study, the dynamics of the active site and the communication paths between the substrates, ATP and TMP, are reported for thymidylate kinase from Thermus thermophilus. Conformational changes upon ligand binding and the path for communication between the substrates and the protein are important in understanding the catalytic mechanism of the enzyme. High-resolution X-ray crystal structures of thymidylate kinase in apo and ligand-bound states were solved. This is the first report of structures of binary and ternary complexes of thymidylate kinase with its natural substrates ATP and ATP-TMP, respectively. Distinct conformations of the active-site residues, the P-loop and the LID region observed in the apo and ligand-bound structures revealed that their concerted motion is required for the binding and proper positioning of the substrate TMP. Structural analyses provide an insight into the mode of substrate binding at the active site. The residues involved in communication between the substrates were identified through network analysis using molecular-dynamics simulations. The residues identified showed high sequence conservation across species. Biochemical analyses show that mutations of these residues either resulted in a loss of activity or affected the thermal stability of the protein. Further, molecular-dynamics analyses of mutants suggest that the proper positioning of TMP is important for catalysis. These data also provide an insight into the phosphoryl-transfer mechanism.


Assuntos
Domínio Catalítico , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Núcleosídeo-Fosfato Quinase/química , Trifosfato de Adenosina/metabolismo , Biocatálise , Ligantes , Ligação Proteica , Thermus thermophilus/enzimologia , Timidina Monofosfato/metabolismo
9.
J Med Chem ; 60(15): 6733-6750, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28726402

RESUMO

To obtain selective and potent opioid receptor ligands, we synthesized dehydro derivatives of alvimopan and found compound (28f), a selective but modest affinity MOR antagonist weaker than alvimopan (1). We replaced the arylpiperidine unit by an arylpiperazine to obtain the 1-(α-carboxycinnamyl)-4-arylpiperazines like 13h, which to our surprise had no MOR or DOR activity but was a KOR agonist with moderate affinity. In contrast, literature examples of arylpiperazines 4 and 5 were reported to be pan opioid receptor antagonists, while 6 was a MOR agonist. Two compounds (13l and 11b) showed analgesic response in tail flick test which was blocked by pretreatment with norbinaltorphimine (norBNI). Among 10 1-(α-carboxycinnamyl)-4-arylpiperidines, compound 28g and five others were specific MOR antagonists. Interestingly, compound 26b of this series was found to be more potent than naloxone but weaker than 1. Docking studies have explained differential activities of the above piperazines and piperidines.


Assuntos
Cinamatos/farmacologia , Piperazinas/farmacologia , Piperidinas/farmacologia , Receptores Opioides kappa/agonistas , Receptores Opioides mu/antagonistas & inibidores , Animais , Barreira Hematoencefálica/metabolismo , Cinamatos/síntese química , Células HEK293 , Humanos , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Naloxona/farmacologia , Antagonistas de Entorpecentes/síntese química , Antagonistas de Entorpecentes/farmacologia , Piperazinas/síntese química , Piperidinas/síntese química
10.
FEBS J ; 284(15): 2527-2544, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28627020

RESUMO

Thymidylate kinase (TMK) is a key enzyme which plays an important role in DNA synthesis. It belongs to the family of nucleoside monophosphate kinases, several of which undergo structure-encoded conformational changes to perform their function. However, the absence of three-dimensional structures for all the different reaction intermediates of a single TMK homolog hinders a clear understanding of its functional mechanism. We herein report the different conformational states along the reaction coordinate of a hyperthermophilic TMK from Aquifex aeolicus, determined via X-ray diffraction and further validated through normal-mode studies. The analyses implicate an arginine residue in the Lid region in catalysis, which was confirmed through site-directed mutagenesis and subsequent enzyme assays on the wild-type protein and mutants. Furthermore, the enzyme was found to exhibit broad specificity toward phosphate group acceptor nucleotides. Our comprehensive analyses of the conformational landscape of TMK, together with associated biochemical experiments, provide insights into the mechanistic details of TMK-driven catalysis, for example, the order of substrate binding and the reaction mechanism for phosphate transfer. Such a study has utility in the design of potent inhibitors for these enzymes. DATABASE: Structural data are available in the PDB under the accession numbers 2PBR, 4S2E, 5H5B, 5XAI, 4S35, 5XB2, 5H56, 5XB3, 5H5K, 5XB5, and 5XBH.


Assuntos
Bactérias Termodúricas/enzimologia , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Núcleosídeo-Fosfato Quinase/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Ligantes , Mutagênese Sítio-Dirigida , Mutação , Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/genética , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribonucleotídeos/química , Ribonucleotídeos/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
11.
J Struct Biol ; 197(3): 372-378, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28167161

RESUMO

In the recent decades, essential steps of protein structure determination such as phasing by multiple isomorphous replacement and multi wave length anomalous dispersion, molecular replacement, refinement of the structure determined and its validation have been fully automated. Several computer program suites that execute all these steps as a pipeline operation have been made available. In spite of these great advances, determination of a protein structure may turn out to be a challenging task for a variety of reasons. It might be difficult to obtain multiple isomorphous replacement or multi wave length anomalous dispersion data or the crystal may have defects such as twinning or pseudo translation. Apart from these usual difficulties, more frequent difficulties have been encountered in recent years because of the large number of projects handled by structural biologists. These new difficulties usually result from contamination of the protein of interest by other proteins or presence of proteins from pathogenic organisms that could withstand the antibiotics used to prevent bacterial contamination. It could also be a result of poor book keeping. Recently, we have developed a procedure called MarathonMR that has the power to resolve some of these problems automatically. In this communication, we describe how the MarathonMR was used to determine four different protein structures that had remained elusive for several years. We describe the plausible reasons for the difficulties encountered in determining these structures and point out that the method presented here could be a validation tool for protein structures deposited in the protein data bank.


Assuntos
Proteínas/química , Proteínas Arqueais/química , Carbono-Oxigênio Liases/química , Cristalografia por Raios X , Conformação Proteica , Estrutura Secundária de Proteína , Pyrococcus horikoshii/química , Pyrococcus horikoshii/metabolismo
12.
Gene ; 600: 77-84, 2017 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-27851981

RESUMO

A decade after the concept of Pan-genome was first introduced; research in this field has spread its tentacles to areas such as pathogenesis of diseases, bacterial evolutionary studies and drug resistance. Gene content-based differentiation of virulent and a virulent strains of bacteria and identification of pathogen specific genes is imperative to understand their physiology and gain insights into the mechanism of genome evolution. Subsequently, this will aid in identifying diagnostic targets and in developing and selecting vaccines. The root of pan-genomic studies, however, is to identify the core genes, dispensable genes and strain specific genes across the genomes belonging to a clade. To this end, we have developed a tool, "PanGeT - Pan-genomics Tool" to compute the 'pan-genome' based on comparisons at the genome as well as the proteome levels. This automated tool is implemented using LaTeX libraries for effective visualization of overall pan-genome through graphical plots. Links to retrieve sequence information and functional annotations have also been provided. PanGeT can be downloaded from http://pranag.physics.iisc.ernet.in/PanGeT/ or https://github.com/PanGeTv1/PanGeT.


Assuntos
Genômica/estatística & dados numéricos , Software , Evolução Molecular , Genoma Bacteriano , Mycobacterium/classificação , Mycobacterium/genética , Proteoma/genética , Salmonella enterica/classificação , Salmonella enterica/genética , Especificidade da Espécie
13.
J Struct Biol ; 197(3): 236-249, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27940092

RESUMO

Thymidylate kinase (TMK) is a key enzyme that plays an important role in DNA synthesis. Therefore, it serves as an attractive therapeutic target for the development of antibacterial, antiparasitic and anticancer drugs. Herein, we report the biochemical characterization and crystal structure determination of thymidylate kinase from a hyperthermophilic organism Sulfolobus tokodaii (StTMK) in its apo and ADP-bound forms. Our study describes the first three-dimensional structure of an archaeal TMK. StTMK is a thermostable enzyme with optimum activity at 80°C. Despite the overall similarity to homologous TMKs, StTMK structures revealed several residue substitutions at the active site. However, enzyme assays demonstrated specificity to its natural substrates ATP and dTMP. Analysis of the structures also revealed multiple conformational states of Arg93 which is located at the reaction centre and is a part of the highly conserved DRX motif. Only one of these states was found to be suitable for the proper positioning of the α-phosphate group of dTMP at the active site. Computational alanine scanning and MM/PBSA binding energy calculation revealed the importance of Arg93 side chain in substrate binding. Subsequent site directed mutagenesis at this position to an Ala resulted in the loss of activity. Thus, the computational and biochemical studies reveal the importance of Arg93 for enzyme function, while the different conformational states of Arg93 observed in the structural studies imply its regulatory role in the catalytically competent placement of dTMP.


Assuntos
Archaea/enzimologia , Arginina/química , Arginina/metabolismo , Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/metabolismo , Sulfolobus/enzimologia , Arginina/genética , Sítios de Ligação , Domínio Catalítico/genética , Domínio Catalítico/fisiologia , Simulação de Dinâmica Molecular , Núcleosídeo-Fosfato Quinase/genética , Especificidade por Substrato
14.
J Biomol Struct Dyn ; 35(10): 2136-2154, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27376462

RESUMO

Thymidylate kinase (TMK) is a key enzyme for the synthesis of DNA, making it an important target for the development of anticancer, antibacterial, and antiparasitic drugs. TMK homologs exhibit significant variations in sequence, residue conformation, substrate specificity, and oligomerization mode. However, the influence of sequence evolution and conformational dynamics on its quaternary structure and function has not been studied before. Based on extensive sequence and structure analyses, our study detected several non-conserved residues which are linked by co-evolution and are implicated in the observed variations in flexibility, oligomeric assembly, and substrate specificity among the homologs. These lead to differences in the pattern of interactions at the active site in TMKs of different specificity. The method was further tested on TMK from Sulfolobus tokodaii (StTMK) which has substantial differences in sequence and structure compared to other TMKs. Our analyses pointed to a more flexible dTMP-binding site in StTMK compared to the other homologs. Binding assays proved that the protein can accommodate both purine and pyrimidine nucleotides at the dTMP binding site with comparable affinity. Additionally, the residues responsible for the narrow specificity of Brugia malayi TMK, whose three-dimensional structure is unavailable, were detected. Our study provides a residue-level understanding of the differences observed among TMK homologs in previous experiments. It also illustrates the correlation among sequence evolution, conformational dynamics, oligomerization mode, and substrate recognition in TMKs and detects co-evolving residues that affect binding, which should be taken into account while designing novel inhibitors.


Assuntos
Proteínas Arqueais/química , Brugia Malayi/química , Proteínas de Helminto/química , Núcleosídeo-Fosfato Quinase/química , Nucleotídeos de Purina/química , Nucleotídeos de Pirimidina/química , Sulfolobus/química , Sequência de Aminoácidos , Animais , Proteínas Arqueais/metabolismo , Sítios de Ligação , Brugia Malayi/enzimologia , Cristalografia por Raios X , Proteínas de Helminto/metabolismo , Humanos , Cinética , Simulação de Dinâmica Molecular , Núcleosídeo-Fosfato Quinase/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Nucleotídeos de Purina/metabolismo , Nucleotídeos de Pirimidina/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato , Sulfolobus/enzimologia , Termodinâmica
15.
Adv Bioinformatics ; 2016: 1673284, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27190508

RESUMO

Ebola Virus Disease (EVD) is a life-threatening haemorrhagic fever in humans. Even though there are many reports on EVD, the protein precursor functions and virulent factors of ebolaviruses remain poorly understood. Comparative analyses of Ebolavirus genomes will help in the identification of these important features. This prompted us to develop the Ebolavirus Database (EDB) and we have provided links to various tools that will aid researchers to locate important regions in both the genomes and proteomes of Ebolavirus. The genomic analyses of ebolaviruses will provide important clues for locating the essential and core functional genes. The aim of EDB is to act as an integrated resource for ebolaviruses and we strongly believe that the database will be a useful tool for clinicians, microbiologists, health care workers, and bioscience researchers.

16.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 11): 2248-66, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26527142

RESUMO

Human transthyretin (hTTR) is a multifunctional protein that is involved in several neurodegenerative diseases. Besides the transportation of thyroxin and vitamin A, it is also involved in the proteolysis of apolipoprotein A1 and Aß peptide. Extensive analyses of 32 high-resolution X-ray and neutron diffraction structures of hTTR followed by molecular-dynamics simulation studies using a set of 15 selected structures affirmed the presence of 44 conserved water molecules in its dimeric structure. They are found to play several important roles in the structure and function of the protein. Eight water molecules stabilize the dimeric structure through an extensive hydrogen-bonding network. The absence of some of these water molecules in highly acidic conditions (pH ≤ 4.0) severely affects the interfacial hydrogen-bond network, which may destabilize the native tetrameric structure, leading to its dissociation. Three pairs of conserved water molecules contribute to maintaining the geometry of the ligand-binding cavities. Some other water molecules control the orientation and dynamics of different structural elements of hTTR. This systematic study of the location, absence, networking and interactions of the conserved water molecules may shed some light on various structural and functional aspects of the protein. The present study may also provide some rational clues about the conserved water-mediated architecture and stability of hTTR.


Assuntos
Pré-Albumina/química , Água/química , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica
17.
J Struct Biol ; 191(1): 22-31, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26072057

RESUMO

The de novo purine biosynthesis is one of the highly conserved pathways among all organisms and is essential for the cell viability. A clear understanding of the enzymes in this pathway would pave way for the development of antimicrobial and anticancer drugs. Phosphoribosylaminoimidazole-succinocarboxamide (SAICAR) synthetase is one of the enzymes in this pathway that catalyzes ATP dependent ligation of carboxyaminoimidazole ribotide (CAIR) with l-aspartate (ASP). Here, we describe eight crystal structures of this enzyme, in C2221 and H3 space groups, bound to various substrates and substrate mimics from a hyperthermophilic archaea Pyrococcus horikoshii along with molecular dynamics simulations of the structures with substrates. Complexes exhibit minimal deviation from its apo structure. The CAIR binding site displays a preference for pyrimidine nucleotides. In the ADP·TMP·ASP complex, the ASP binds at a position equivalent to that found in Saccharomyces cerevisiae structure (PDB: 2CNU) and thus, clears the ambiguity regarding ASP's position. A possible mode for the inhibition of the enzyme by CTP and UTP, observed earlier in the yeast enzyme, is clearly illustrated in the structures bound to CMP and UMP. The ADP.Mg(2+)·PO4·CD/MP complex having a phosphate ion between the ATP and CAIR sites strengthens one of the two probable pathways (proposed in Escherichia coli study) of catalytic mechanism and suggests the possibility of a phosphorylation taking place before the ASP's attack on CAIR. Molecular dynamic simulations of this enzyme along with its substrates at 90°C reveal the relative strengths of substrate binding, possible antagonism and the role of Mg(2+) ions.


Assuntos
Simulação de Dinâmica Molecular , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Pyrococcus horikoshii/metabolismo
18.
Comput Biol Med ; 55: 86-91, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25450223

RESUMO

BACKGROUND: Haemophilus influenzae (H. Influenzae) is the causative agent of pneumonia, bacteraemia and meningitis. The organism is responsible for large number of deaths in both developed and developing countries. Even-though the first bacterial genome to be sequenced was that of H. Influenzae, there is no exclusive database dedicated for H. Influenzae. This prompted us to develop the Haemophilus influenzae Genome Database (HIGDB). METHODS: All data of HIGDB are stored and managed in MySQL database. The HIGDB is hosted on Solaris server and developed using PERL modules. Ajax and JavaScript are used for the interface development. RESULTS: The HIGDB contains detailed information on 42,741 proteins, 18,077 genes including 10 whole genome sequences and also 284 three dimensional structures of proteins of H. influenzae. In addition, the database provides "Motif search" and "GBrowse". The HIGDB is freely accessible through the URL: http://bioserver1.physics.iisc.ernet.in/HIGDB/. DISCUSSION: The HIGDB will be a single point access for bacteriological, clinical, genomic and proteomic information of H. influenzae. The database can also be used to identify DNA motifs within H. influenzae genomes and to compare gene or protein sequences of a particular strain with other strains of H. influenzae.


Assuntos
Bases de Dados Genéticas , Genoma Bacteriano , Genômica/métodos , Haemophilus influenzae/genética , Internet , Farmacorresistência Bacteriana/genética , Modelos Moleculares , Software
19.
Sci Rep ; 4: 7214, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25428720

RESUMO

Severe sepsis or septic shock is one of the rising causes for mortality worldwide representing nearly 10% of intensive care unit admissions. Susceptibility to sepsis is identified to be mediated by innate pattern recognition receptors and responsive signaling pathways of the host. The c-Jun N-terminal Kinase (JNK)-mediated signaling events play critical role in bacterial infection triggered multi-organ failure, cardiac dysfunction and mortality. In the context of kinase specificities, an extensive library of anthrapyrazolone analogues has been investigated for the selective inhibition of c-JNK and thereby to gain control over the inflammation associated risks. In our comprehensive biochemical characterization, it is observed that alkyl and halogen substitution on the periphery of anthrapyrazolone increases the binding potency of the inhibitors specifically towards JNK. Further, it is demonstrated that hydrophobic and hydrophilic interactions generated by these small molecules effectively block endotoxin-induced inflammatory genes expression in in vitro and septic shock in vivo, in a mouse model, with remarkable efficacies. Altogether, the obtained results rationalize the significance of the diversity oriented synthesis of small molecules for selective inhibition of JNK and their potential in the treatment of severe sepsis.


Assuntos
Antraquinonas/farmacologia , Endotoxinas/efeitos adversos , Inflamação/tratamento farmacológico , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Pirazolonas/farmacologia , Choque Séptico/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Expressão Gênica/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Inflamação/induzido quimicamente , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Choque Séptico/induzido quimicamente , Choque Séptico/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
20.
Genomics ; 104(6 Pt B): 582-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25269378

RESUMO

Streptococcus pneumoniae causes pneumonia, septicemia and meningitis. S. pneumoniae is responsible for significant mortality both in children and in the elderly. In recent years, the whole genome sequencing of various S. pneumoniae strains have increased manifold and there is an urgent need to provide organism specific annotations to the scientific community. This prompted us to develop the Streptococcus pneumoniae Genome Database (SPGDB) to integrate and analyze the completely sequenced and available S. pneumoniae genome sequences. Further, links to several tools are provided to compare the pool of gene and protein sequences, and proteins structure across different strains of S. pneumoniae. SPGDB aids in the analysis of phenotypic variations as well as to perform extensive genomics and evolutionary studies with reference to S. pneumoniae. The database will be updated at regular intervals and is freely accessible through the URL: http://pranag.physics.iisc.ernet.in/SPGDB/.


Assuntos
Proteínas de Bactérias/genética , Bases de Dados Genéticas , Genes Bacterianos , Análise de Sequência de DNA/métodos , Análise de Sequência de Proteína/métodos , Software , Streptococcus pneumoniae/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência de Bases , Dados de Sequência Molecular , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...